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Self-consistent expansion results for the nonlocal Kardar-Parisi-Zhang equation
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In this paper various predictions for the scaling exponents of the nonlocal Kardar-Parisi-Zhang~NKPZ!
equation are discussed. I use the self-consistent expansion~SCE!, and obtain results that are quite different
from the result obtained in the past, using dynamic renormalization-group analysis, a scaling approach, and a
self-consistent mode-coupling approach. It is shown that the results obtained using SCE recover an exact result
for a subfamily of the NKPZ models in one dimension, while all the other methods fail to do so. It is also
shown that the SCE result is the only one that is compatible with simple observations on the dependence of the
dynamic exponentz in the NKPZ model on the exponentr characterizing the decay of the nonlinear interac-
tion. The reasons for the failure of other methods to deal with NKPZ are also discussed.
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I. INTRODUCTION

The field of disorderly surface growth has received mu
attention during the last two decades. A multitude of differe
phenomena such as fluid flow in porous media, propaga
of flame fronts, flux lines in superconductors not to ment
deposition processes, bacterial growth, and ‘‘DNA walk’’@1#
are all said to be related to the famous Kardar-Parisi-Zh
~KPZ! equation@2#. Therefore, further understanding of th
behavior of the KPZ equation has a broad interest in
fields of nonequilibrium dynamics and in disordered s
tems.

The KPZ equation for a growing surface is

]h~rW,t !

]t
5n¹2h1

l

2
~“h!21h~rW,t !. ~1!

This equation describes the height fluctuations of
d-dimensional interface, whereh(rW,t) is the height atrW mea-
sured relative to its spatial average,n is the diffusion con-
stant, andh(rW,t) is the fluctuation of the rate of deposition
The noiseh(rW,t) has a zero mean@^h(rW,t)&50# and it sat-
isfies

^h~rW,t !h~rW8,t8!&52D0dd~rW2rW8!d~ t2t8! ~2!

~white noise! where d is the substrate dimension andD0
specifies the noise amplitude.

Together with the great success of the KPZ equation
describe many growth models and phenomena, there
been a growing pool of data that is not well described
KPZ, and triggered further research. One of the first clas
that belongs to this non-KPZ behavior is the well-know
molecular-beam-epitaxy~MBE! class~sometimes also called
the conserved KPZ equation! @3–9#. This class is distinct
from KPZ in having surface diffusion as the basic relaxat
mechanism. However, the modified behavior introduced
the MBE equation is not at all sufficient to account for all t
rich non-KPZ experimental data in the field. Actually, th
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conserved KPZ model is not considered today as a real
continuum model for MBE processes. The conserved K
model does not include the effects of step-edge barriers
the phenomenon of slope selection, which are experiment
well known to dominate the MBE growth for long times~see
Refs.@10,11#!, so that the inclusion of such mechanisms e
riches the possible universality classes even more.

A different line of research suggested that the ba
growth equation should not be changed. Instead, the w
noise that appears in the original KPZ equation should
correlated—either temporally or spatially@12–16#. This ap-
proach was indeed quite successful. However, it still failed
give a good account for all the measured scaling expone

Recently, some researchers suggested that incorpora
the long-range nature of interactions in the growing surfa
is necessary for a proper description of many systems suc
colloid systems@17#, paper-burning experiments@18#, or pro-
tein deposition kinetics@19#. Following this basic intuition
Mukherji and Bhattacharjee@20# developed a Langevin-type
equation with a nonlocal nonlinearity, thus going beyond
KPZ local description of interactions. They studied origina
the white noise case that was later generalized to spat
correlated noise by Chattapohadhyay@21#. To be more spe-
cific, the equation they studied was

]h~rW,t !

]t
5n¹2h~rW,t !1

1

2E dr8g~rW8!“h~rW1rW8,t !

3“h~rW2rW8,t !1h~rW,t !, ~3!

where the kernelg(rW) represents the long-range interaction
They takeg(rW) with a short-range partl0dd(rW) and with a
long-range part;lrr r2d, or more precisely in Fourier
space,ĝ(q)5l01lrq2r. The noise has again a zero mea
but it is allowed to have spatially long-range correlation
characterized by its second moment

^h~rW,t !h~rW8,t !&52D0urW2rW8u2s2dd~ t2t8!, ~4!

where the case of white noise is restored in the limits50
@20#.
©2003 The American Physical Society13-1
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In the following section I will present current theoretic
predictions for the scaling exponents of the NKPZ model
will become evident that all the previous results are inc
sistent with an exact one-dimensional result obtained in
past. Then, in Sec. III the self-consistent expansion~SCE!
approach will be applied to this model. Interestingly, th
method yields results that are consistent with the exact o
dimensional result. Then, results for higher dimensions
well as for generalr ’s are presented. Eventually, a discussi
of the reasons for the failure of the various theoretical me
ods is given in Sec. IV, and conclusions are drawn in Sec

II. PREVIOUS RESULTS

Both papers@20,21# investigated this problem using dy
namic renormalization-group~DRG! analysis, and derived a
very complex zoo of universality classes~Ref. @21# also ap-
plied a mode-coupling approach confirming some of the
sults of DRG!. Let us not get into all those details, but rath
focus on the strong-coupling solution~in the KPZ sense@1#!
suggested by both papers, namely,

zDRG521
~d2222r!~d2223r!

~3122r!d2629r
, ~5!

wherez is the dynamic exponent. To complete the pictu
the roughness exponenta can be calculated using the mod
fied scaling relationa1z522r ~which actually comes
from the famous Galilean invariance!. Notice that this result
does not depend explicitly ons as long ass.0.

On the basis of the DRG result@Eq. ~5!# Mukherji and
Bhattacharjee tried to explain some non-KPZ experime
results in one dimension, namely, a roughness exponen
a50.71 given in Refs.@17,18# that implies, according to
their DRG calculation,r520.12, and requiresl050. As
already appreciated by the authors, this result raises s
doubts on physical grounds, whether a truel050 is seen in
experiment and where should a negativer, which implies
anticorrelations@22# rather than correlations that cause t
interaction, come from.

This finding is obviously disturbing because if DR
yields accurate results then the NKPZ equation canno
relevant to the physical processes discussed above. As
be shown later, the DRG result is far from being accurate
that the above argument against the relevance of the NK
equation is not valid. The relevance of the NKPZ equat
has been doubted, however, for other reasons too, but
will not be discussed here.

The equation is interesting by itself and generalizes
traditional KPZ prototype of nonlinear stochastic field equ
tions that are so abundant in the description of natural p
nomena. Therefore, reliable methods of solution are of g
importance. DRG is one such general method, but unfo
nately the DRG results look suspicious for the followin
three reasons.

First, the expression for the dynamic exponent@Eq. ~5!#
reduces to the well-known result of Medinaet al. @12# z
521(d22)2/(4d26) in the limit of r50 ~i.e., the limit of
local KPZ!—a result that by itself is meaningful only for th
04611
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case ofd51. It is a well-known fact that DRG cannot giv
the strong-coupling solution of the local KPZ equation f
d.1 @24#. This may suggest that the DRG result is not c
rect also for the nonlocal case, especially ford.1. Further-
more, the mode-coupling approach that is known to be m
appropriate than DRG when dealing with the standard K
problem@13,25# yielded a strong-coupling result that is di
ferent from Eq.~5! @21#. Yet, it should be mentioned that th
mode-coupling approach@21# ~at least using the simplest an
satz! was not able to produce a nonpower counting soluti
as obtained in the local KPZ case@25#.

Second, it is easily seen that the explicit expression
the dynamical exponent@given in Eq.~5! above# has a sin-
gularity for r’s that satisfy (3122rs)d2629rs50 ~for ex-
ample, in one dimensionrs520.205). It is not clear why
should such a singularity appear at all and if it appears, t
why should it take this specific value.

Third, from general considerations one should expect
following scenario: asr becomes more and more negativ
the interaction that couples the gradients is enormously
duced with distance@remember that the long-range part
the kernel scales asg(rW);lrr r2d]. Therefore, one should
expect that in this region, the nonlinear term becomes ir
evant, and the scaling exponents of the linear theory„also
known as the Edwards-Wilkinson~EW! theory @23#… should
be recovered. On the other side, asr becomes larger and
larger, the interaction becomes more and more relevant,
one might expect that as a consequence faster relaxa
should appear in the system~faster relaxations imply smalle
values of the dynamical exponentz). Therefore, it is reason
able that a nonincreasing behavior of the dynamical ex
nentz as a function ofr will be seen. It is not difficult to see
that the expression for the dynamical exponent@given by Eq.
~5!# does not follow this reasoning.

Lately, an exact result for the NKPZ model was foun
@26#. It turns out that the Fokker-Planck equation associa
with the Langevin-form of the NKPZ model@i.e., Eq. ~3!
above# can be solved exactly for a specific subfamily
models in one dimension. More specifically, a Gauss
steady-state solution was found for the casel050, r52s
when d51. This exact solution yields the following dy
namic exponent:

zexact5
323r

2
. ~6!

It is easy to see that this result reduces to the well-kno
local-KPZ ~that corresponds tor50! result, z53/2, in one
dimension.

This exact result is not compatible with the DRG result
either quantitatively or qualitatively. As mentioned abov
DRG is usually considered relatively reliable in one dime
sion. However, this exact result indicates DRG’s shortco
ing already in one dimension. The inevitable conclusion
that in order to gain insight into the behavior of the NKP
model in any dimension, and for any value ofr ~the nonlocal
parameter! ands ~the long-range noise parameter! it is nec-
essary to employ more reliable methods.
3-2
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SELF-CONSISTENT EXPANSION RESULTS FOR THE . . . PHYSICAL REVIEW E 68, 046113 ~2003!
Actually, two methods that proved useful in the context
the local-KPZ problem were applied recently to the NKP
problem as well. The first method, is a Flory-type scali
approach that was originally proposed by Hentschel
Family @27# and generalized lately by Tang and Ma@28# to
the nonlocal case. The strong-coupling dynamical expon
obtained by using this scaling approach~SA! is

zSA5
~22r!~21d22s!

31d22s
. ~7!

The second method applied to the NKPZ equation is
improved version of the mode-coupling approach. More p
cisely, it is a solution of the mode-coupling equations us
an improved ansatz that describes correctly the asymp
behavior of the solution. This approach was first proposed
Colaiori and Moore@29#, and applied by Hu and Tang@30# to
the nonlocal case. The strong-coupling exponents using
method are obtained by a numerical solution of the follow
set of transcendental equations:

PASd8

B
5

d~22z!

pz2

22r

BI~B,z,r!
,

PASd8

B2
5

b~b2z!

pz2

2(2z2b)/b12r

GS 2z2b

b D /b

, ~8!

where Sd85*0
psind22udu, G(u) is Euler’s gamma function

b5d1422z22r, B51/2(22z), and I (B,z,r)5*0
`(1

2r22s2)s2z23exp(2Bb/zsb2s2)ds. Such a numerical solu
tion for z as a function ofr for d51,2,3 is presented in Fig
1 of Ref. @30#.

While these two results look reasonable, in the sense
both do not develop any singularity as a function ofr, and at
least the first one@given by Eq.~7!# describes a nonincreas
ing dynamical exponent, it turns out that both results are
incompatible with the exact result ofz5(323r)/2 @given
by Eq. ~6!#. In addition, the mode-coupling solution has
peak ford.1 meaning that the dynamic exponentz is not
monotonous as a function ofr, which is expected from gen
eral considerations. Therefore, there is still a need for a r
able method to tackle this problem. The reasons given ab
motivated the analysis presented in this paper.

III. THE SELF-CONSISTENT EXPANSION

In this paper I apply a method developed by Schwartz
Edwards@16,31,32# ~also known as the self-consistent e
pansion approach!. This method has been previously appli
successfully to the KPZ equation. The method gained m
credit by being able to give a sensible prediction for the K
critical exponents in the strong-coupling phase ford.1,
where, as previously mentioned, many renormalizati
group~RG! approaches failed~as well as DRG of course!. It
also produces the exact one-dimensional result. I will sh
that in contrast to DRG, the experimental resulta50.71 is
accounted for, when using the SCE, by a positiver. Further-
04611
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more, I will show that the SCE method yields the exact
sult, for the specific subfamily of models that can be solv
exactly in one dimension, where other methods fail. In ad
tion, solutions for anyd, r, ands are obtained. These solu
tions are consistent with the expected qualitative scen
presented above.

As will be seen immediately, another remarkable adv
tage of the SCE method is the minor changes needed in o
to generalize the result of local KPZ with uncorrelated no
to include nonlocal interactions as well as spatially corre
tions in the noise. The above implies a second import
motivation for this paper, namely, a demonstration of t
robustness of the SCE method as well as its mathema
coherence and consistency.

The SCE method is based on going over from the Fou
transform of the equation in Langevin form to a Fokke
Planck form and constructing a self-consistent expansion
the distribution of the field concerned. I therefore consid
first the NKPZ equation@Eq. ~3!# in Fourier components

]hq

]t
52nqhq2(

,,m
Mq,mh,hm1hq , ~9!

whereV is the volume of the system, to be taken eventua
to infinity andhq is the noise term that satisfies

^hq~ t !&50, ~10!

^hq~ t !hq8~ t8!&52D0q22sdd~qW 1qW 8!d~ t2t8!, ~11!

andMq,m andnq are defined by

Mq,m5
lr

AV
q2r~,W •mW !dq,,1m ,

nq5nq2. ~12!

Rewriting this equation in a Fokker-Planck form we ge

]P

]t
1(

q

]

]hq
FD0q22s

]

]h2q
1nqhq1(

,,m
Mq,mh,hmGP50,

~13!

whereP$hq ,t% is the probability of havinghq at a specific
time t.

The expansion is formulated in terms offq and vq ,
wherefq is the two-point function in momentum space, d
fined byfq5^hqh2q&S ~the subscriptSdenotes steady state
averaging! andvq is the characteristic frequency associat
with each mode.

It is generally expected that for small enoughq, fq and
vq are power laws inq:

fq5Aq2G ~14!

and

vq5Bqz, ~15!
3-3
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TABLE I. A complete description of all the possible phases of the NKPZ problem, for any value ofd,r, ands. The first two columns
give the scaling exponentsz andG for a particular phase, and the third column states each phase’s validity condition. Note thatG0(d,r) is
the numerical solution of the transcendental equationF(G,z,r)50 with the scaling relationz5(d142G22r)/2.

z G Validity

222r 222r12s s.r.0 andd.212s23r
222r 2 r.0, s,r, andd.22r

2 212r s,r,0 andd.214r
r,0, s.r, and one of the following:

~1! d.max$212s1r,214s%
2 212s

~2! s.
1
2

r andd.212s12r

~3! s,
1
2

r and 214s,d,212s1r
~4! 212s12r,d,214s

d1422r22s

3
d1422r14s

3
s.r, d,212s2r23uru, andd1422r14s

.3G0(d,r)
d142G0(d,r)22r

2
Sol. of F(G,z,r)50, d,3G0(d,r)241min$2r24s,22r%

denoted byG0(d,r) andd,G0(d,r)22uru
on

or

d

r

c

to
he
e
f

ing

nt
sly
ts

r,
ng-
E.
st-
th-
de-
wherez is just the dynamic exponent, and the exponentG is
related to the roughness exponenta by

a5
G2d

2
. ~16!

The main idea is to write the Fokker-Planck equati
]P/]t5OP in the form ]P/]t5@O01O11O2#P, where
O0 is to be considered zero order in some parameterl, O1 is
first order, andO2 is second order. The evolution operat
O0 is chosen to have a simple formO052(q(]/]hq)
3@Dq(]/]h2q)1vqhq#, where Dq /vq5fq . Note that at
presentfq andvq are not known.

Next, an equation for the two-point function is obtaine
The expansion has the formfq5fq1cq($fp%,$vp%). This
reflects the fact that the lowest order in the expansion
exactly the unknownfq . In the same way an expansion fo
vq is also obtained in the formvq5vq1dq($fp%,$vp%).
Now, the two-point function and the characteristic frequen
are thus determined by the two coupled equations

cq~$fp%,$vp%!50,

dq~$fp%,$vp%!50. ~17!

These equations can be solved exactly in the asymp
limit to yield the required scaling exponents governing t
steady-state behavior and the time evolution. Working to s
ond order in the expansion, these equations are just the
lowing two coupled integral equations:
04611
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D0q22s2nqfq12(
,,m

Mq,mMq,mf,fm

vq1v,1vm

22(
,,m

Mq,mM ,mqfmfq

vq1v,1vm
22(

,,m

Mq,mMm,qf,fq

vq1v,1vm
50,

~18!

and

nq2vq22(
,,m

Mq,m

M ,mqfm1Mm,qf,

v,1vm
50, ~19!

where in deriving the last equation I have used the Herr
consistency equation@33#. In fact Herring’s definition of
vq is one of many possibilities, each leading to a differe
consistency equation. But it can be shown, as previou
done in Ref.@32#, that this does not affect the exponen
~universality!.

A detailed solution of Eqs.~18! and ~19! in the limit of
small q’s ~i.e., large scales! is performed ~as in Refs.
@16,32#!, and yields a very rich family of solutions for anyd,
r, and s. These solutions are given in Table I. Howeve
before getting into all the details let me focus on the stro
coupling nonpower counting solution obtained by the SC
The reason for focusing on this solution is that it is intere
ing to compare it with the solutions obtained by other me
ods, and with the experimental results. This solution is
termined from the combination of the scaling relationz
5(d142G22r)/2, obtained from Eq.~19!, and the tran-
scendental equationF(G,z,r)50, whereF is given by
3-4
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F~G,z,r!52E ddt
tW•~ ê2 tW !

tz1uê2 tWuz11
@~ ê• tW !uê2 tWu2rt2G

1ê•~ ê2 tW !t2ruê2 tWu2G#1

1E ddt
@ tW•~ ê2 tW !#2

tz1uê2 tWuz11
t2Guê2 tWu2G, ~20!

and ê is a unit vector in an arbitrary direction.
This solution is valid as long as it satisfies the followin

conditions: d,3G0(d,r)241min$2r24s,22r% and d
,G0(d,r)22uru, whereG0(d,r) is the numerical solution
of the equationF(G,z,r)50—when such a solution exist
~how to obtain the conditions above see Ref.@32#!.

It turns out that ford51 the equationF„G,z(G),r…50 is
exactly solvable for anyr, and yieldsG521r and z5(3
23r)/2 ~it can be checked immediately by direct substi
tion!. In this case the three validity conditions read21/3
,r,1 andr.~4s21!/5. By using Eq.~16! I translate the
results intoa5~r11!/2 andz5(323r)/2. It is straightfor-
ward to check that this solution reduces to the exact K
results ofa51/2 andz53/2 in the limit of r50. Moreover,
this solution recovers the exact solution obtained in R
@26#, and by doing that clearly performs better than all t
other results presented above@Eqs.~5!,~7!, and~8!#.

It should also be mentioned that ford>2 such an exac
solution for F(G,z(G),r)50 as a closed analytical expre
sion cannot be found, and one has to solve numerically
equation in order to findG0(d,r) ~such results are presente
below!.

As can be appreciated, the full description of the resu
given in Table I is quite rich and may look confusing.
order to gain more insight into this seemingly long list
possible phases I concentrate on the case of white nois~s
50!, and I describe all the possible phases~as a function of
r! for d51,2,3.

In one dimension, the following scaling exponents a
obtained:

z55
2, r,2

1

2

522r

3
, 2

1

2
,r,2

1

5

323r

2
, 2

1

5
,r,1

222r, r.1

and

G55
2, r,2

1

2

522r

3
, 2

1

2
,r,2

1

5

21r, 2
1

5
,r,1

2, r.1. ~21!
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The dynamic exponent is presented in Fig. 1~a!.
It can be seen that the dynamic exponent, obtained u

SCE is continuous, has no singularities, and is nonincrea
as a function ofr. In addition, the intuition that the scalin
exponents of the linear theory should appear in the limit
very smallr8s is verified and specified, namely, forr<21

2

the Edwards-Wilkinson~EW! exponents ofz52 anda51/2
are obtained.

An important observation regarding the one-dimensio
results is that for every region ofr8s, well-defined values of
z andG are obtained, so that only one phase is possible w
r is specified, and no phase transition as a function of
dimensionless coupling constant~that is defined byg2

5l2D0/n3) exists.
In two dimensions, the following scaling exponents a

obtained:

z55
2, r,0

222r, r.0

22G0~2,r!

2
122r, r2

,,r,r2
u

and

G5H 2, r,0

2, r.0

G0~2,r!, r2
,,r,r2

u , ~22!

wherer2
, and r2

u are the lower and upper bounds onr, re-
spectively, for which a solution for the transcendental eq
tion F„G,z(G),r…50 yields a dynamic exponent that doe
not exceedz52 andz5222r. To be more specific,r2

,5
20.395 andr2

u50.305 @the dynamic exponent is also pre
sented in Fig. 1~b!#.

An important observation regarding the two-dimension
result is that for values ofr within the regionr2

,,r,r2
u

there are two possible solutions~except forr50!. This can
be easily seen in Fig. 1~b!—where two branches appear
that region. This means that a phase transition is possible
a function of the strength of the dimensionless coupling c
stant in the theory, between a weak-coupling solution@34#
~the upper branch in the figure! and a strong-coupling solu
tion ~the lower branch in the figure!.

This phenomenon is surprising in view of the known fa
that d52 is the lower critical dimension of the local KP
theory. This means that for dimensions higher than 2 a ph
transition becomes possible in the local problem, but in 2D
is only the strong coupling phase. This fact is indeed
spected by the results presented above, because forr50
~that corresponds to the local theory! such a phase transitio
is not possible. However, surprisingly if one takes eith
positive or negativer’s ~even slightly higher or lower than
zero! such a phase transition becomes possible. This find
is explained by the fact that the lower critical dimension
lowered in the presence of long-range interactions. The
point is that for positiver’s ~r.0! the relevant ‘‘weak-
coupling’’ phase is a phase with a dynamic exponent oz
5222r, and this phase becomes possible ford.22r. In
addition, for negativer’s ~r,0!, a different weak-coupling
3-5
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FIG. 1. The values of the dynamic exponentz as a function of
the nonlocal parameterr, for uncorrelated noise~s50!. ~a!, ~b!, and
~c! are ford51,2, and 3, respectively.
04611
solution is possible—this one with a dynamic exponent
z52, and this phase becomes possible ford.212r52
22uru. Therefore, once we encounter a nonzeror the lower
critical dimension is reduced~for two different reasons!, and
one of the weak-coupling solutions becomes possible. In
case, a phase transition can also take place.

In more than two dimensions, the scaling exponents
low the scheme:

z55
2, r<0

222r, r.0

d2G0~d,r!

2
122r, rd

,,r,rd
u

and

G5H 2, r<0

2, r.0

G0~d,r!, rd
,,r,rd

u , ~23!

whenever a solution forF„G,z(G),r…50 exists. Notice a
difference from the two-dimensional case in that the we
coupling exponents are also possible whenr50. I have per-
formed the detailed calculation ford53, and it is shown in
Fig. 1~c! ~wherer3

,520.016 andr3
u50.246). It can be seen

that no big quantitative difference from the two-dimension
case is present.

IV. DISCUSSION

The results I obtained using the self-consistent expans
~SCE! are obviously different from those obtained by all th
other methods. First, the SCE is able to reproduce the e
one-dimensional result, where all the other methods f
Second, the SCE results are compatible with the expe
behavior of the dynamic exponent forr→2` ~i.e., recovery
of the EW exponents! as well as with the expected nonin
creasing behavior of the dynamic exponent as a function
r. None of the other results mentioned before recovers
EW behavior for large negativer8s, and only one such resu
shows a nonincreasing behavior of the dynamic exponen
a function ofr—namely, the result presented in Ref.@28#.

At this point, it might be interesting to return to the e
perimental result of Refs.@17,18# that were discussed prev
ously, and to discuss them in view of the results derived h
It turns out that the SCE method yieldsr50.42 ~r52a21!
for the case ofa50.71~at least if the noise is white, or mor
precisely if the exponent that describes the decay of spa
correlationss is not large!. This result is physically more
reasonable than the resultr520.12 suggested in Ref.@20#.
In addition, sincer.0, it does not require to impose th
strict requirementl050, which is also problematic physi
cally.

It remains a mystery why all the methods that were m
tioned at the beginning of the paper failed to reproduce
exact one-dimensional result, while they all yield the ex
result for the local KPZ case~r50!. The answer to this
3-6
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puzzle lies, in my opinion, in the fact that all those metho
fail to notice that the nonlocal nonlinearity generates a n
local relaxation term under renormalization. This means t
once a nonlocal nonlinearity is introduced into the equati
effectively a certain fractional Laplacian is present as w
This fact can be observed when applying the SCE method
the ‘‘one-step renormalization stage’’ that is part of the so
tion ~see for example Eqs.~6.8!–~6.10! in Ref. @32#!. Then,
in addition to theq2-relaxation term aq222r-relaxation term
appears, and it obviously dominates the dynamics in
large-scale limit~i.e.,q→0 limit! whenr.0. I think that the
failure to realize this fact prevented the other methods fr
recovering the exact one-dimensional result.

The last statement can be checked for the methods m
tioned above. My prediction is that if one adds by hand
correct relaxational term, namely,q222r, then at least in one
dimension the right answer will be obtained for the nonlo
model as well. This idea suggests another important adv
tage of SCE, since a straightforward application of S
yields the extra fractional Laplacian, and it does not have
be thought of and added beforehand.

V. CONCLUSIONS

In this paper several results for the nonlocal Kard
Parisi-Zhang equation have been discussed. It has b
shown that those theoretical predictions for the scaling ex
nents of the NKPZ equation are inconsistent with a rec
one-dimensional exact result@26# that is possible for tha
model. I also claimed that these predictions are not com
ible with the expected behavior for the dynamic exponenz
. A

y
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as a function of the nonlocal parameterr from general con-
siderations presented above.

Then, in order to derive reliable results that are consist
with the exact one-dimensional result an alternative meth
namely, the self-consistent expansion, has been used.
results obtained using SCE were also consistent with
expectedr dependence of the dynamic exponent. In additi
the SCE is able to give sensible predictions for higher
mensions, as well as for any value ofr ands. All the pos-
sible phases found using SCE are summarized in Table

Then I discuss the implication of this calculation to ce
tain experimental results@17,18# that might be well described
by a NKPZ model. At the end I also discuss possible reas
for the failure of all the other methods to recover the ex
one-dimensional result, and to yield sensible predictio
namely, the generation of a fraction Laplacian term in t
equation under renormalization. This observation may tr
ger future work on the ‘‘fixed’’ NKPZ model that include
such a term from the beginning, using methods such as m
coupling. It would then be very interesting to compare b
tween the various results in higher dimensions.

This situation, along with previous results obtained
Refs.@16,31,32#, suggests that the SCE method is genera
a successful method when dealing with such nonlin
Langevin equations.
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equation and does not mean that the nonlinear term is
important. The point is that the nonlocal nonlinear term gen
ates a fractional Laplacian~that is more relevant than the La
placian in the equation! so that the effective linear theory is th
Fractal Edwards-Wilkinson equation that gives rise to su
‘‘weak-coupling’’ phases—see discussion for more details.
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