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Self-consistent expansion results for the nonlocal Kardar-Parisi-Zhang equation
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In this paper various predictions for the scaling exponents of the nonlocal Kardar-Parisi-Z&Rg)
equation are discussed. | use the self-consistent expa(8©B, and obtain results that are quite different
from the result obtained in the past, using dynamic renormalization-group analysis, a scaling approach, and a
self-consistent mode-coupling approach. It is shown that the results obtained using SCE recover an exact result
for a subfamily of the NKPZ models in one dimension, while all the other methods fail to do so. It is also
shown that the SCE result is the only one that is compatible with simple observations on the dependence of the
dynamic exponent in the NKPZ model on the exponeptcharacterizing the decay of the nonlinear interac-
tion. The reasons for the failure of other methods to deal with NKPZ are also discussed.
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[. INTRODUCTION conserved KPZ model is not considered today as a realistic
continuum model for MBE processes. The conserved KPZ
The field of disorderly surface growth has received muchmodel does not include the effects of step-edge barriers and
attention during the last two decades. A multitude of differentthe phenomenon of slope selection, which are experimentally
phenomena such as fluid flow in porous media, propagatiowell known to dominate the MBE growth for long timésee
of flame fronts, flux lines in superconductors not to mentionRefs.[10,11]), so that the inclusion of such mechanisms en-
deposition processes, bacterial growth, and “DNA wdlk]  riches the possible universality classes even more.
are all said to be related to the famous Kardar-Parisi-Zhang A different line of research suggested that the basic
(KPZ) equation[2]. Therefore, further understanding of the growth equation should not be changed. Instead, the white
behavior of the KPZ equation has a broad interest in thenoise that appears in the original KPZ equation should be
fields of nonequilibrium dynamics and in disordered sys-correlated—either temporally or spatiafl$2—16. This ap-
tems. proach was indeed quite successful. However, it still failed to
The KPZ equation for a growing surface is give a good account for all the measured scaling exponents.
Recently, some researchers suggested that incorporating
oh(F,t) o N 5 _ the long-range nature of interactions in the growing surface
a vVoh+ E(Vh) +(1,1). D s necessary for a proper description of many systems such as
colloid system$17], paper-burning experimenit$8], or pro-
This equation describes the height fluctuations of a€in deposition kinetic$19]. Following this basic intuition
d-dimensional interface, whetg(ft) is the height af mea- Mukherji and Bhattacharjel20] developed a Langevin-type
sured relative to its spatial averagejs the diffusion con- ~€quation with a nonlocal nonlinearity, thus going beyond the
stant, andy(F,t) is the fluctuation of the rate of deposition. KPZ local description of interactions. They studied originally

The noiser(f,t) has a zero meaf( »(f,t))=0] and it sat- the white noise case that was later generalized to spatially
isfies correlated noise by Chattapohadhy@i]. To be more spe-

cific, the equation they studied was

(n(F. 1) n(F' 1)) =2Dg%F—F")5(t—t") )

oh(F,t) N 1 . L
(white nois@ whered is the substrate dimension aril, P =vV?h(f,t)+ Ef dr'g(r")Vh(r+r',t)
specifies the noise amplitude.
Together with the great success of the KPZ equation to XVh(r—r",t)+ 5(r,t), 3

describe many growth models and phenomena, there has

been a growing pool of data that is not well described by, here the kernetj() represents the long-range interactions.

KPZ, and triggered further research. One of the first classe§hey takeg(F) with a short-range pait,6%(F) and with a
that belongs to this non-KPZ behavior is the We"'knownlong-range part~\ r*~9, or more pr(zacisely in Fourier
p L

molecular-beam-epitaxfMBE) class(sometimes also called spaced(q)=Ao+\,q"". The noise has again a zero mean,

';he clcigsze_rvehd KPZ eiuat'b(;ﬁ.?f_g.]' This r(:lazs IS d'ISt'nCt_ but it is allowed to have spatially long-range correlations,
rom in having surface diffusion as the basic relaxation o acterized by its second moment

mechanism. However, the modified behavior introduced by
the MBE equation is not at all sufficient to account for all the N _ 120 )
rich non-KPZ experimental data in the field. Actually, the (n(F, ) (1)) =2Do|F = F"|*""5(t—t'), 4

where the case of white noise is restored in the lionit0
*Electronic address: eytak@post.tau.ac.il [20].
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In the following section | will present current theoretical case ofd=1. It is a well-known fact that DRG cannot give
predictions for the scaling exponents of the NKPZ model. Itthe strong-coupling solution of the local KPZ equation for
will become evident that all the previous results are incon-d>1 [24]. This may suggest that the DRG result is not cor-
sistent with an exact one-dimensional result obtained in theect also for the nonlocal case, especially dor 1. Further-
past. Then, in Sec. Ill the self-consistent expangi8@E  more, the mode-coupling approach that is known to be more
approach will be applied to this model. Interestingly, thisappropriate than DRG when dealing with the standard KPZ
method yields results that are consistent with the exact ongroblem[13,25 yielded a strong-coupling result that is dif-
dimensional result. Then, results for higher dimensions agerent from Eq.(5) [21]. Yet, it should be mentioned that the
well as for generagp’s are presented. Eventually, a discussionmode-coupling approadi21] (at least using the simplest an-
of the reasons for the failure of the various theoretical methsat? was not able to produce a nonpower counting solution,
ods is given in Sec. IV, and conclusions are drawn in Sec. Vas obtained in the local KPZ caf25].

Second, it is easily seen that the explicit expression for
Il. PREVIOUS RESULTS the dynamical exponerigiven in Eq.(5) abovd has a sin-
gularity for p's that satisfy (3+277s)d—6—9p,=0 (for ex-

Both paperq20,2]] investigated this problem using dy- ample, in one dimensiops= —0.205). It is not clear why
namic renormalization-groufDRG) analysis, and derived a should such a singularity appear at all and if it appears, then
very complex zoo of universality classéRef. [21] also ap-  why should it take this specific value.
plied a mode-coupling approach confirming some of the re-  Third, from general considerations one should expect the
sults of DRG Let us not get into all those details, but rather fo”owing scenario: ap becomes more and more negative,
focus on the strong-coupling soluti¢im the KPZ sens¢l])  the interaction that couples the gradients is enormously re-

suggested by both papers, namely, duced with distancéremember that the long-range part of
the kernel scales ag(r*)~)\prf’*d]. Therefore, one should
S (d—2-2p)(d—2-3p) (5) expect that in this region, the nonlinear term becomes irrel-
DRG (3+27°)d—6-9p ' evant, and the scaling exponents of the linear theafgo

known as the Edwards-WilkinsofEW) theory[23]) should
wherez is the dynamic exponent. To complete the picture,be recovered. On the other side, @sbecomes larger and
the roughness exponeatcan be calculated using the modi- larger, the interaction becomes more and more relevant, and
fied scaling relationa+z=2—p (which actually comes one might expect that as a consequence faster relaxations
from the famous Galilean invarianceNotice that this result should appear in the systeffaster relaxations imply smaller
does not depend explicitly o as long asr>0. values of the dynamical exponez)t Therefore, it is reason-

On the basis of the DRG resUIEq. (5)] Mukherji and  able that a nonincreasing behavior of the dynamical expo-
Bhattacharjee tried to explain some non-KPZ experimentahentzas a function op will be seen. It is not difficult to see
results in one dimension, namely, a roughness exponent dfiat the expression for the dynamical exporigiten by Eq.
«=0.71 given in Refs[17,1§ that implies, according to (5] does not follow this reasoning.
their DRG calculation,p=—0.12, and require.,=0. As Lately, an exact result for the NKPZ model was found
already appreciated by the authors, this result raises soni@6]. It turns out that the Fokker-Planck equation associated
doubts on physical grounds, whether a thug=0 is seen in  Wwith the Langevin-form of the NKPZ modédi.e., Eq. (3)
experiment and where should a negatjvewhich implies above can be solved exactly for a specific subfamily of
anticorrelationg 22] rather than correlations that cause themodels in one dimension. More specifically, a Gaussian
interaction, come from. steady-state solution was found for the case=0, p=20

This finding is obviously disturbing because if DRG when d=1. This exact solution yields the following dy-
yields accurate results then the NKPZ equation cannot bgamic exponent:
relevant to the physical processes discussed above. As will
be shown later, the DRG result is far from being accurate, so 3-3p
that the above argument against the relevance of the NKPZ Zexact:T
equation is not valid. The relevance of the NKPZ equation
has been doubted, however, for other reasons too, but this
will not be discussed here. It is easy to see that this result reduces to the well-known

The equation is interesting by itself and generalizes théocal-KPZ (that corresponds tp=0) result,z=3/2, in one
traditional KPZ prototype of nonlinear stochastic field equa-dimension.
tions that are so abundant in the description of natural phe- This exact result is not compatible with the DRG result—
nomena. Therefore, reliable methods of solution are of greagither quantitatively or qualitatively. As mentioned above,
importance. DRG is one such general method, but unfortubRG is usually considered relatively reliable in one dimen-
nately the DRG results look suspicious for the following sion. However, this exact result indicates DRG'’s shortcom-
three reasons. ing already in one dimension. The inevitable conclusion is

First, the expression for the dynamic exponfgd|. (5)]  that in order to gain insight into the behavior of the NKPZ
reduces to the well-known result of Medire al. [12] z  model in any dimension, and for any valuemfthe nonlocal
=2+ (d—2)?/(4d—6) in the limit of p=0 (i.e., the limit of  parameterand o (the long-range noise parametéris nec-
local KP2)—a result that by itself is meaningful only for the essary to employ more reliable methods.

(6)
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Actually, two methods that proved useful in the context ofmore, | will show that the SCE method yields the exact re-
the local-KPZ problem were applied recently to the NKPZsult, for the specific subfamily of models that can be solved
problem as well. The first method, is a Flory-type scalingexactly in one dimension, where other methods fail. In addi-
approach that was originally proposed by Hentschel andion, solutions for anyd, p, ando are obtained. These solu-
Family [27] and generalized lately by Tang and 28] to  tions are consistent with the expected qualitative scenario
the nonlocal case. The strong-coupling dynamical exponendresented above.
obtained by using this scaling approa@»n) is As will be seen immediately, another remarkable advan-

tage of the SCE method is the minor changes needed in order
_(2=p)(2+d—20) to generalize the result of local KPZ with uncorrelated noise
ZsA= 3+d—20 ’ @) to include nonlocal interactions as well as spatially correla-
tions in the noise. The above implies a second important

The second method applied to the NKPZ equation is amotivation for this paper, namely, a demonstration of the
improved version of the mode-coupling approach. More prerobustness of the SCE method as well as its mathematical
cisely, it is a solution of the mode-coupling equations usingcoherence and consistency.
an improved ansatz that describes correctly the asymptotic The SCE method is based on going over from the Fourier
behavior of the solution. This approach was first proposed byransform of the equation in Langevin form to a Fokker-
Colaiori and Moord29], and applied by Hu and Tari§0]to  Planck form and constructing a self-consistent expansion of
the nonlocal case. The strong-coupling exponents using thise distribution of the field concerned. | therefore consider
method are obtained by a humerical solution of the followingfirst the NKPZ equatiofiEq. (3)] in Fourier components
set of transcendental equations:

dhq
PAS, d(2-2) 2% — =~ Yaha™ 2 Maenhehm+ 7, ©)

¢,m
B 722 BI(B,zp)’

where() is the volume of the system, to be taken eventually
to infinity and 7 is the noise term that satisfies

PA _ 2(22—ﬁ)/ﬁ+2p
S _ B2 o

B2 wz> (22—3) ’ (7(1))=0, (10)
r 3 18

(mq(t) mq:(t'))=2Doq 278U G+G") 8(t—t"), (11)
where S{,zfgsind‘zada, I'(u) is Euler's gamma function,
B=d+4-2z-2p, B=1/2(2-2z), and I(B,z,p)=[,(1 andMg, andv, are defined by
— p—25%)s¥*3exp(-BF%#—s°)ds Such a numerical solu-
tion for z as a function of for d=1,2,3 is presented in Fig. Np .
1 of Ref.[30]. qum=ﬁq P(€-M)Sq ¢4+m,
While these two results look reasonable, in the sense that
both do not develop any singularity as a functiorppéind at )
least the first onggiven by Eq.(7)] describes a nonincreas- vg=vas (12)
ing dynamical exponent, it turns out that both results are still . . .
incompatible with the exact result a=(3—3p)/2 [given Rewriting this equation in a Fokker-Planck form we get

by Eg. (6)]. In addition, the mode-coupling solution has a

peak ford>1 meaning_that the _dyn_amic exponemis not £+z i Doq‘2”i+v h +E M gemhehin| P=0,
monotonous as a function pf which is expected from gen- dt <G dhq oh_q 99 GO
eral considerations. Therefore, there is still a need for a reli- (13
able method to tackle this problem. The reasons given above
motivated the analysis presented in this paper. v_vhere P{hq ,t} is the probability of havinghq at a specific
time t.
Ill. THE SELF-CONSISTENT EXPANSION The expansion is formulated in terms @f; and wq,

where ¢ is the two-point function in momentum space, de-
In this paper | apply a method developed by Schwartz andined by ¢=(hqh_)s (the subscrips denotes steady state-

Edwards[16,31,33 (also known as the self-consistent ex- averaging and w is the characteristic frequency associated
pansion approaghThis method has been previously applied with each mode.
successfully to the KPZ equation. The method gained much It is generally expected that for small enough¢, and
credit by being able to give a sensible prediction for the KPZw, are power laws irg:
critical exponents in the strong-coupling phase tbr1,
where, as previously mentioned, many renormalization- ¢>q:Aq‘F (14)
group(RG) approaches failetas well as DRG of courselt
also produces the exact one-dimensional result. | will shovwand
that in contrast to DRG, the experimental resw#t0.71 is
accounted for, when using the SCE, by a posipiv€&urther- wq=Bq’, (15
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TABLE I. A complete description of all the possible phases of the NKPZ problem, for any valdg paindo. The first two columns
give the scaling exponentsandI” for a particular phase, and the third column states each phase’s validity condition. Ndfg(ithat) is
the numerical solution of the transcendental equafi¢h,z,p) =0 with the scaling relatioz=(d+4—1"—2p)/2.

z r Validity
2—-2p 2—-2p+20 o>p>0 andd>2+20—3p
2—-2p 2 p>0, 0<p, andd>2—-p
2 2+2p o<p<0 andd>2+4p

p<0, o>p, and one of the following:
(1) d>max2+20+p,2+ 40}

2 2+20 1
(2 a'>§p andd>2+20+2p
1
(3) o<sp and 2+40<d<2+20+p
(4) 2+20+2p<d<2+i4co
d+4—-2p—20 d+4—-2p+ido o>p, d<2+20—p—3|p|, andd+4-2p+40

3 3 >3lo(d,p)
d+4-Ty(d,p)—2p Sol. of F(I',z,p) =0, d<3Iy(d,p) — 4+ min{2p—40,—2p}

2

denoted byl'4(d, p) andd<Ty(d,p)—2|p|

wherez is just the dynamic exponent, and the exporieig D=2~ . +22 MgemM gem®e brm
related to the roughness exponenby od VqPq = —wq+w€+wm
_22 Mq@memq¢m¢q _22 qumM m€q¢€¢q =0
r—d 16) tm wgtotonp tm wgtoiton ’
a=—/".
2 (18
The main idea is to write the Fokker-Planck equation
AP/at=0P in the form gP/gt=[0y+O;+0,]P, where and
Oy is to be considered zero order in some parametéd, is
first order, andO, is second order. The evolution operator
Op is chosen to have a simple for®,=—Z=,(d/dh)
X[Dq(dldh_q) + wghg], where Dy/w,=,. Note that at Memg®m+ Mmeqébe _
present¢, and w, are not known. ”q_“’q_zgn Maem it o, =0, (19

Next, an equation for the two-point function is obtained.
The expansion has the fore,= ¢q+cq({bp}.{wp}). This

refleclts thhe falft that th? Ior:/vest order in the expapsiofn i%vhere in deriving the last equation | have used the Herring
exactly the unknownp, . In the same way an expansion for . \itancy equatiofid3). In fact Herring's definition of

wq IS also obtained in the formug=wq+dg({dp} .1 wp}). wq is one of many possibilities, each leading to a different
Now, the two-point function and the characteristic frequency . . : )

. . consistency equation. But it can be shown, as previously
are thus determined by the two coupled equations

done in Ref.[32], that this does not affect the exponents
(universality.

A detailed solution of Eqs(18) and (19) in the limit of
Cq({#pt{wph) =0, small g’s (i.e., large scalgsis performed(as in Refs.
[16,32), and yields a very rich family of solutions for aly
p, and o. These solutions are given in Table I. However,
before getting into all the details let me focus on the strong-
coupling nonpower counting solution obtained by the SCE.
The reason for focusing on this solution is that it is interest-

These equations can be solved exactly in the asymptotiitig to compare it with the solutions obtained by other meth-
limit to yield the required scaling exponents governing theods, and with the experimental results. This solution is de-
steady-state behavior and the time evolution. Working to sectermined from the combination of the scaling relatian
ond order in the expansion, these equations are just the fol=(d+4—1"—2p)/2, obtained from Eq(19), and the tran-
lowing two coupled integral equations: scendental equatioR(I",z,p) =0, whereF is given by

dq({pp}{@p})=0. (17)
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f.(a—1) ) ) The dynamic exponent is presenyed in Figp)1 . .
F(T,z,p)= _J dit———————[(&-t)|e—t| " It can be seen that the dynamic exponent, obtained using
t?+e—t|*+1 SCE is continuous, has no singularities, and is nonincreasing
R . as a function ofp. In addition, the intuition that the scaling
+e- (-t et "]+ exponents of the linear theory should appear in the limit of

> . o very smallp’s is verified and specified, namely, fps=—3
+f 4 [t-(e—1)] tTla—f|T 20 the Edwards-WilkinsofEW) exponents ok=2 anda=1/2
7+ |- {7+1 ’ are obtained. _ _ _ _
An important observation regarding the one-dimensional
and@ is a unit vector in an arbitrary direction. results is that for every region @f s, well-defined values of
This solution is valid as long as it satisfies the following ZandI' are obtained, so that only one phase is possible when
conditions: d<3Io(d,p)—4+min{2p—40,—2p} and d P IS specified, and no phase transition as a function (2)1‘ the
<To(d,p)—2|p|, whereT'y(d,p) is the numerical solution d|m2enS|or31Iess_ coupling constaiithat is defined byg
of the equatiorF(I',z,p) =0—when such a solution exists — N Po/?°) €xists. . .
(how to obtain the conditions above see H&E]). In_ twq dimensions, the following scaling exponents are
It turns out that fod=1 the equatior=(I",z(I"),p)=0 is obtained:
exactly solvable for any, and yieldsI'=2+p and z=(3 2, p<0
—3p)/2 (it can be checked immediately by direct substitu-

tion). In this case the three validity conditions read/3 _ 2=2p, p=0
<p<1 andp>(40—1)/5. By using Eq.(16) | translate the 2=y 2-Ty(2,p) ¢ u
results intoa=(p+1)/2 andz=(3—3p)/2. It is straightfor- 2 +t2=p, P2<p=p2
ward to check that this solution reduces to the exact KPZ
results ofa=1/2 andz=3/2 in the limit of p=0. Moreover, .4
this solution recovers the exact solution obtained in Ref.
[26], and by doing that clearly performs better than all the 2, p<0
other results presented abo\ggs. (5),(7), and(8)]. r=1{ 2, p>0
It should also be mentioned that fd=2 such an exact . "
solution for F(I",z(I'),p) =0 as a closed analytical expres- Lo(2p), pa<p<p; , (22

sion cannot be found, and one has to solve numerically th

L . Where p! and pY are the lower and upper bounds ppre-
equation in order to find'o(d,p) (such results are presented P2 P2 PP pn

bel spectively, for which a solution for the transcendental equa-
elow). . e tion F(I',z(I'),p)=0 yields a dynamic exponent that does
As can be appreciated, the full description of the results, )+ s oady =2 andz=2-2p. To be more specificp,=

given in Table | is quite rich and may look confusing. In —0.395 andpi=0.305[the dynamic exponent is also pre-
order to gain more insight into this seemingly long list of sen.ted in Fig Zﬂb)].

possible phases_l concentrate on the case of Wh't? loise An important observation regarding the two-dimensional
=0), and | describe all the possible phasgas a function of result is that for values op within the regionp<p<p!
p)ford=123. . . there are two possible solutiofiexcept forp=0). This can
In on(? dimension, the following scaling exponents are o easily seen in Fig.()—where two branches appear in
obtained: that region. This means that a phase transition is possible, as
( 1 a function of the strength of the dimensionless coupling con-
2, p<—= stant in the theory, between a weak-coupling solufig4
(the upper branch in the figurand a strong-coupling solu-
5—=2p 1 1 tion (the lower branch in the figuye
5 This phenomenon is surprising in view of the known fact
3-3p 1 thatd=2 is the lower critical dimension of the local KPZ
_— - =<p<1 theory. This means that for dimensions higher than 2 a phase
transition becomes possible in the local problem, but in 2D it
2—2p, p>1 is only the strong coupling phase. This fact is indeed re-
\ spected by the results presented above, because=for
and (that corresponds to the local thepsuch a phase transition
( 1 is not possible. However, surprisingly if one takes either
2, p<—= positive or negative's (even slightly higher or lower than
zerg such a phase transition becomes possible. This finding
5—2p 1 1 is explained by the fact that the lower critical dimension is
5 lowered in the presence of long-range interactions. The key
1 point is that for positivep’s (p>0) the relevant “weak-
2+p, ——<p<1 coupling” phase is a phase with a dynamic exponent of
5 =2-2p, and this phase becomes possibledor2—p. In
2, p>1. (22 addition, for negativep's (p<<0), a different weak-coupling
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solution is possible—this one with a dynamic exponent of
z=2, and this phase becomes possible dor2+2p=2
—2|p|. Therefore, once we encounter a nonzgtthe lower
critical dimension is reducedor two different reasonsand
one of the weak-coupling solutions becomes possible. In that
case, a phase transition can also take place.

In more than two dimensions, the scaling exponents fol-
low the scheme:

2, p=<0
2-2p, p>0
£=) d=To(d,p)
——t2-p, PG<p<p
and
2, p=<0
To(d,p), p4<p<py. (23

whenever a solution foF(I',z(I'),p)=0 exists. Notice a
difference from the two-dimensional case in that the weak-
coupling exponents are also possible whetD. | have per-
formed the detailed calculation far=3, and it is shown in
Fig. 1(c) (whereps=—0.016 andpy=0.246). It can be seen
that no big quantitative difference from the two-dimensional
case is present.

IV. DISCUSSION

The results | obtained using the self-consistent expansion
(SCB are obviously different from those obtained by all the
other methods. First, the SCE is able to reproduce the exact
one-dimensional result, where all the other methods fail.
Second, the SCE results are compatible with the expected
behavior of the dynamic exponent fpr——x (i.e., recovery
of the EW exponenjsas well as with the expected nonin-
creasing behavior of the dynamic exponent as a function of
p. None of the other results mentioned before recovers the
EW behavior for large negatiy&'s, and only one such result
shows a nonincreasing behavior of the dynamic exponent as
a function ofp—namely, the result presented in REZ8].

At this point, it might be interesting to return to the ex-
perimental result of Ref$17,18 that were discussed previ-
ously, and to discuss them in view of the results derived here.
It turns out that the SCE method yielgs=0.42 (p=2a—1)
for the case otv=0.71(at least if the noise is white, or more
precisely if the exponent that describes the decay of spatial
correlationso is not large. This result is physically more
reasonable than the resyl=—0.12 suggested in Ref20].

In addition, sincep>0, it does not require to impose the
strict requirement =0, which is also problematic physi-
cally.

It remains a mystery why all the methods that were men-
tioned at the beginning of the paper failed to reproduce the
exact one-dimensional result, while they all yield the exact
result for the local KPZ casép=0). The answer to this
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puzzle lies, in my opinion, in the fact that all those methodsas a function of the nonlocal paramegefrom general con-
fail to notice that the nonlocal nonlinearity generates a nonsiderations presented above.
local relaxation term under renormalization. This means that Then, in order to derive reliable results that are consistent
once a nonlocal nonlinearity is introduced into the equationwith the exact one-dimensional result an alternative method,
effectively a certain fractional Laplacian is present as well.namely, the self-consistent expansion, has been used. The
This fact can be observed when applying the SCE method, iresults obtained using SCE were also consistent with the
the “one-step renormalization stage” that is part of the solu-expectech dependence of the dynamic exponent. In addition,
tion (see for example Eq$6.8)—(6.10 in Ref.[32]). Then, the SCE is able to give sensible predictions for higher di-
in addition to theg?-relaxation term aj?~ 2-relaxation term  mensions, as well as for any value @&nd o. All the pos-
appears, and it obviously dominates the dynamics in theible phases found using SCE are summarized in Table I.
large-scale limiti.e.,q— 0 limit) whenp>0. | think that the Then | discuss the implication of this calculation to cer-
failure to realize this fact prevented the other methods frontain experimental resulf{d 7,18 that might be well described
recovering the exact one-dimensional result. by a NKPZ model. At the end | also discuss possible reasons

The last statement can be checked for the methods mefer the failure of all the other methods to recover the exact
tioned above. My prediction is that if one adds by hand theone-dimensional result, and to yield sensible predictions,
correct relaxational term, namely? 2, then at least in one namely, the generation of a fraction Laplacian term in the
dimension the right answer will be obtained for the nonlocalequation under renormalization. This observation may trig-
model as well. This idea suggests another important advarger future work on the “fixed” NKPZ model that includes
tage of SCE, since a straightforward application of SCEsuch a term from the beginning, using methods such as mode
yields the extra fractional Laplacian, and it does not have t@oupling. It would then be very interesting to compare be-
be thought of and added beforehand. tween the various results in higher dimensions.

This situation, along with previous results obtained in
Refs.[16,31,33, suggests that the SCE method is generally

) a successful method when dealing with such nonlinear
In this paper several results for the nonlocal Kardar-| angevin equations.

Parisi-Zhang equation have been discussed. It has been
shown that those theoretical predictions for the scaling expo-
nents of the NKPZ equation are inconsistent with a recent
one-dimensional exact resyl26] that is possible for that
model. | also claimed that these predictions are not compat- | would like to thank Moshe Schwartz for useful discus-

V. CONCLUSIONS
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ible with the expected behavior for the dynamic expornent sions.
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